A New Model for Blood Cancer Classification Based on Deep Learning Techniques
نویسندگان
چکیده
Artificial intelligence and deep learning algorithms have become essential fields in medical science. These help doctors detect diseases early, reduce the incidence of errors, decrease time required for disease diagnosis, thereby saving human lives. Deep models are widely used Computer-Aided Diagnosis Systems (CAD) classification various diseases, including blood cancer. Early diagnosis cancer is crucial effective treatment patients' Therefore, this study developed two distinct to classify eight types include follicular lymphoma (FL), mantle cell (MCL), chronic lymphocytic leukemia (CLL), acute myeloid (AML), subtypes lymphoblastic (ALL) known as early pre-B, pro-B ALL, benign. AML ALL specific classifications cancer, while FL, MCL, CLL lymphoma. Both consist different phases, data collection, preprocessing, feature extraction techniques, process. The techniques applied these phases same both proposed models, except phase. first model utilizes VGG16 architecture, second DenseNet-121. results indicated that DenseNet-121 achieved a lower accuracy compared VGG16. exhibited excellent results, achieving an 98.2% when classifying classes. This outcome suggests most classifier utilized dataset.
منابع مشابه
Deep learning-based CAD systems for mammography: A review article
Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملEEG Classification based on Machine Learning Techniques
The main issue to build applicable Brain-Computer Interfaces is the capability to classify the electroencephalograms (EEG). During the last decade, researchers developed lots of interests in this field. The purpose behind this research is to improve a model for EEG signals analysis. Filtration of EEG Signals is essential to remove artifacts. Otherwise, wavelet transform was used to extract feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2023
ISSN: ['2158-107X', '2156-5570']
DOI: https://doi.org/10.14569/ijacsa.2023.0140645